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Topological properties of benzenoid systems. Bounds 
and approximate formulae for total  r-electron energy 
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A novel variational approach to McClelland's estimate of total w-electron 
energy (E)  is described. An extension of this method yields lower and upper 
bounds and E of benzenoid hydrocarbons. On the basis of these bounds 
several approximate topological formulae for E are obtained. 
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1. Introduction 

The present paper deals with total ~--electron energy of benzenoid hydrocarbons, 
as calculated within the framework of the Hiickel molecular orbital model. Total 
~r-electron energy belongs to the most important and best understood topological 
properties of conjugated molecules [1], which has been examined in theoretical 
chemistry for decades. 

Graph-theoretical  methods, introduced to theoretical chemistry about 1970 and 
thereafter [2], made the discovery of a number of general and exact results on 
total 7r-electron energy possible (e.g. [3-5]). In the present paper we shall derive 
some more results of this type, valid for benzenoid hydrocarbons. 

Let  G be a molecular graph [1] with n vertices and m edges. This means that 
the corresponding conjugated hydrocarbon has n carbon atoms and m carbon- 
carbon bonds. Let  x l ,  x2 . . . . .  x n be the eigenvalues [1] of G, labelled in non- 
decreasing order. Then the Hiickel total w-electron energy (in/3 units and with 
reference to the standard carbon-atom Coulomb integral, a, as the zero of 
energies) is given by 

E = ~ gixi (1) 
i = 1  
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where gi is the occupation number  of the ith molecular orbital. In the present 
work we will consider non-charged conjugated hydrocarbons having a closed-shell 
ground state. In other words, we will assume that n is even and 

g i=2  for i =  1 ,2  . . . .  , n / 2  
(2) 

g i = 0  f o r i = n / 2 + l  . . . . .  n. 

Consequently,  

gi=_n 
i = l  

and 

g/2 = 2gi for all i. (3) 

Bearing in mind the conditions (2), formula (1) can be understood as a mapping 
which in a unique manner  associates a scalar E = E ( x )  with an ordered n-tuple 
x = (Xl, x2 . . . . .  x~). In the following, we will be interested in extremal properties 
of E ( x ) ,  when x is subject to certain constraints. 

If xl, x2 . . . . .  x,  are eigenvalues of a schlicht graph, then they conform to two 
well-known identities [6], namely 

xl = 0 (4) 
i = l  

and 

xZ= 2m. (5) 
i = 1  

2. An extremal property of total ~'-electron energy 

McClelland [7] has discovered that the total rr-electron energy is bounded as 
follows: 

E <- ~/2mn. (6) 

The simple expression ~/2--~n, which appears  on the r.h.s, of McClelland's estimate 
(6) plays an important  role in the topological theory of conjugated molecules [1]. 

The following observation, related to the McClelland's inequality, served as the 
starting point for the investigations exposed in the present paper. 

Proposition 1. If x satisfies the conditions (4) and (5), then E ( x )  cannot exceed 
the McClelland limit ~/2-~n. Fur thermore,  E ( x = ) ~ 2 m n  if and only if xl = x2 = 
. . . .  Xn /2  = , / 2 - - ~  and x~/2+1 . . . . .  x, --- - ~ / 2 m / n .  

Proof. Proposition 1 is a special case of a s tatement which has been proved in 
the Appendix.  In order to obtain Proposition 1, one has simply to set H = 0 and 
M = m in Proposition 4. 
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The above result suggests that improvements of the McClelland bound (6) could 
be obtained by introducing some more constraints in addition to (4) and (5). In 
the following, we will solve a related variational problem with three constraints, 
deducing thus both upper and lower bounds for E of benzenoid hydrocarbons. 

3. Bounds for total ~--electron energy of benzenoid hydrocarbons 

Whereas numerous topological properties of benzenoid hydrocarbons have been 
examined in detail [8], not much is known about their total ~--electron energies. 
Hall [9] has first noticed that E is a linear function of the number of Kekul6 
structures. This empirical finding was later further elaborated in [10, 11]. 

Benzenoid graphs are bipartite and therefore [12] 

X i ~ --Xn+l_ i for all i. (7) 

Consequently, instead of (1) and (5) we have 

n/2 

E = 2 Y~ xi (8) 
i = 1  

and 

n/2 

2 2 xi = m. (9) 
i = 1  

Note that if the relations (7) hold, then the condition (4) is automatically fulfilled. 

One of the most distinguished properties of benzenoid systems is the Dewar-  
Longuet-Higgins theorem [13] which claims that the product of all the eigenvalues 
of a benzenoid graph is equal to the square of the number of Kekul6 structures 
of the corresponding molecule. Bearing in mind the relations (7), we can write 
the Dewar-Longuet-Higgins theorem in the form 

n/2 

Y~ In x~ = l n K  (10) 
i = 1  

where, of course, we assume that K > 0. 

Proposition 2. Consider the equations 

a2+ ( n / 2 - 1 ) b  2 = m, (1 la) 

a b " / 2 - 1 = K ,  K > 0 .  ( l l b )  

Let  al ,  bl be the solution of (11), such that aa > ba > 0. Let a2, b2 be the solution 
of (11), such that b 2 > a z > O .  Let E m i n = 2 a l + ( n - 2 ) b a  and Emax = 
2 a z + ( n - 2 ) b 2 .  Then for a benzenoid hydrocarbon with n carbon atoms, m 
carbon-carbon bonds and K Kekul6 structures, 

Ernin~ E < Emax �9 

The equality in the left relation holds only for benzene. 
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Proof. We determine the extremes of the function E(x ) ,  provided x fulfills the 
conditions (7), (9) and (10). Because of (7) we may use (8) instead of (1). Hence 
we must  determine the Lagrange multipliers ,~ and/z,  such that the r.h.s, of (12) 
is maximal or minimal, 

n/2 
Y~ (2xi+Ax2+/z In xi) = E + A m + / ,  InK. (12) 

i= l  

Differentiation with respect to x~(i = 1, 2 . . . . .  n / 2 )  gives 

2 + 2 A x i + l z / x ~  =0.  (13) 

It is not easy to find A and /, from Eq. (13). Fortunately, this is not at all 
necessary. Namely, Eq. (13) has just two different solutions: 

x~ = a = - ( 1  +x/1 -2h / z ) / ( 2A)  

and 

x, = b = - ( 1 - x / ~ -  2a /z) / (2a) .  

We must not select all &'s equal, because according to Proposition 1, such a 
choice would result in McClelland's upper bound. Therefore  we must choose 
some xi to equal a and some & to equal b. 

It is now obvious that the choice Xl = a, x2 . . . . .  xn/2 = b will yield a lower 
bound for E ( x )  if a > b, and an upper bound for E ( x )  if a < b. 

Proposition 2 follows. 

In Table 1 are collected the Emin, E and Emax values of some typical benzenoid 
hydrocarbons. More detailed numerical testing showed that Emi n is usually 3 -4% 
below and Emax is 4 % - 5 %  above the exact E value. 

It is not difficult to see that Eq. (11) has exactly two positive solutions. Fig. 1 
presents a typical example for the functions (1 la)  and ( l l b ) .  

It is not possible to solve (11) explicitly, except in the case of benzene. However,  
the solutions of (11) are easily obtained by iteration. (In order to obtain al,  bl 

Table 1. Lower  and upper  bounds for total ~--electron energy of some 
benzenoid hydrocarbons (according to Proposition 2) 

Compound  Emi n E Ema x 

Benzene 8.00 8.00 8.08 
Naphthalene  13.48 13.68 13.98 
Anthracene  18.69 19.31 19.99 
Phenan threne  19.04 19.45 20.09 
Triphenylene 24.70 25.27 26.28 
Pyrene 21.80 22.51 23.41 
Perylene 27.13 28.25 29.61 
Coronene  33.32 34.57 36.49 
Ovalene 44.24 46.50 49.65 
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'~ a2,b 2 ) 

Fig. I. Functions (lla) and (1 l b) for the case n = 24, m = 30, K = 20 (coronene) 

we start with the guess b~ ~ = 0, substitute it in (1 la) and determine a~ ~ Substitut- 
ing a~ ~ back into ( l l b ) ,  we determine b~ 1) etc. The solution a2, b2 is obtained 
starting with the guess a(f )=  0. Such an iterative procedure rapidly converges, 
as can be seen from Fig. 1.) A statisfactory approximate expression for Emin is 
obtained after three iterations: 

,~(37 = 2 T + 2q (K / T)  1/q E m i n  ~- E,  min (14) 

where 

T = ~ / m _ q 4  m K2 
- q(K2/m)a/q  

and 

q = n / 2 - 1 .  

Eq. (14) reproduces Emi, with an error  of only 0.1% or less, what has been 
established by extensive numerical testing (see also the subsequent section). An 
equally precise approximtion for Emax requires only one iteration: 

Em.x ~ E~)~x = 2x/-mq + 2K (q/  m) q/2. (15) 

Note that ~{1) is a linear function of K. ~ m a x  

r~ (1 )  Proposition 3. Let E(m3"~ and ~max be the topological expressions given by (14) 
and (15). Then 

Exceptionally, the left inequality does not hold for benzene. 

r7(2) According to our experience, even ~m~, is a lower bound for total 7r-electron 
energy of polycyclic benzenoid hydrocarbons. 
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Propositions 2 and 3 provide relatively narrow lower and upper  bounds for total 
zr-electron energy of benzenoid hydrocarbons.  These statements are restricted 
to benzenoid systems because they are based on Eq. (10). 

The Dewar-Longuet -Higgins  theorem can be extended to non-benzenoid (but 
alternant) systems by taking into account the parity of Kekul6 structures [13, 14]. 
Therefore  Eq. (10) and all its consequences (e.g. Propositions 2 and 3) also hold 
for non-benzenoid alternant hydrocarbons,  provided K is everywhere inter- 
changed by ACS, the algebraic structure count [14, 15]. 

4. Approximate topological formulae for total ~r-electron energy of 
benzenoid hydrocarbons 

McClelland [7] found a very good linear correlation between his upper  bound 
(2rnn) 1/2 and E. We examined whether  similar correlations can be observed 
between E, Emin and Emax, and arrived at the formulae (16)-(19).  

4 ~(3) . E = 1.05 /Zmin, (16) 

E = 1.091E(m3~n - 1.377, (17) 

4^~(1) E = 0 . 9  0tz . . . .  (18) 

E = 0.912E(mla~x + 1.193. (19) 

The approximate  formulae given in the present section are obtained by least 
squares fitting. The exact E values for 106 benzenoid hydrocarbons are taken 
f rom the book [16]. The mean error,  the maximal error observed and the 
correlation coefficient of these formulae are collected in Table 2. 

rv(1) r ( 3 )  From Table 2 is seen that ~max correlates with E slightly bet ter  than/~min. This 
is not surprising if one has in mind the previous finding [9, 10] that in the case 
of benzenoid hydrocarbons,  E is a linear function of K. 

Based on Eq. (15), we designed two additional semiempirical formulae,  viz., 

E = 1 . 8 7 6 ( m q ) l / 2 + 3 . 9 4 6 K ( q / m ) q / z ,  (20) 

E = 1 . 8 0 4 ( m q ) l / 2 + O . 4 2 1 K ( q / m ) q / 2 +  1.686, (21) 

Table 2. Results of numerical testing of the topological formulae (16)-(22). Asterisk denotes that 
benzene has been disregarded 

Formula Mean error (%) Maximal error observed (%)* Correlation coefficient 

16 1.3 4.3 0.99989 
17 1.0 3.9 0.998 
18 0.78 3.4 0.99997 
19 0.37 2.4 0.9998 
20 0.50* 2.4 
21 0.32 1.1 
22 0.14 0.63 
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which give somewhat more  accurate results than Eqs. (18) and (19). 

It  is necessary to point out here that Hall [10] recently proposed an emprical 
formula 

E = 0.442n + 0 .788m + 0.34K(0.632) m-n (22) 

which reproduces E considerably bet ter  than Eqs. (16)-(21).  An at tempt  towards 
a theoretical justification of (22) was reported in [11]. 

5. Appendix 

Generalization of McClelland' s formula for conjugated molecules with heteroatoms 

In the case of heteroconjugated molecules, instead of Eqs. (4) and (5), we have 

xi = H (A.1) 
i=1 

and 

~ x 2 = 2 M  (A.2) 
i=1 

where 

H = Y . h ,  and 2 M = 2 Y  (krs)z+Y~(hr) 2 
r r < ~ s  r 

and h, and krs are the usual H M O  parameters  for heteroatoms. In particular, if 
the conjugated system considered possesses just one he teroatom and if the 
resonance integrals between the heteroatom and the adjacent carbon atoms are 
assumed to have the standard carbon-carbon value [17], then 

H = h  and 2 M = 2 m + h  2. 

In the case of hydrocarbons,  H = 0 and M = m. 

Proposition 4. If the relations (A.1) and (A.2) hold, then E ( x )  cannot be greater  
than 

Ema x = H + (2Mn - H 2) 1/2 

Proof. Multiplying (A.1) with h and (A.2) with /z and adding the obtained 
equations to (1), we get 

~. (gixi + Axi + Izx 2) = E + AH + 21zM. 
i=a 

The r.h.s, of the above expression will be maximal if 

gi + h + 2/zx~ = 0 (A.3) 

for all values of i. The relation (A.3) can also be written as 

gix~ = -Ax~ - 2tzx 2 (A.4) 
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and,  taking into account  (3), 

4/xex 2 = 2gi +2giA +A 2 (A.5) 

Summing  (A.3),  (A.4) and  (A.5) over  all values of i, we obta in  

n + A n + 2 t z H  = 0 ,  (A.6) 

E = - A H - 4 1 ~ M  (A.7) 

and 

8/z2M = 2n  + 2An + h2n. (A.8) 

F r o m  (A.6) and  (A.8) the Lagrange  mult ipl iers  h a n d / z  are de te rmined  as 

h = - 1 + H ( 2 M n  - HE) -1/2 (A.9) 

and  

n H2)_1/2 I~ = - ~  ( 2 M n  - . (A.10)  

Subs t i tu t ion  of (A.9) and (A.10)  back into (A.7)  gives the requi red  expression 

for i = 1, 2 . . . . .  n / 2  

for i =  n / 2 + l , . . . ,  n. 

for Ema x. 

Coro l la ry .  E ( x ) =  Emax if and  only if 

1 
xl = --  [ H + ( 2 M n  - H 2) 1/2] 

n 

and  

1 
xi = - [ H  - ( 2 M n  - H 2) 1/2] 

n 
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